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2 Background and Motivations

Tasks
 

of environmental
 

engineer
 

or
 

hydrogeologist
-

 
estimation

 
of natural

 
processes

Spatial
 

variability, complexity
 

of natural
 

process
-

 
Geostatistical

 
methods

Available
 

information
 

–
 

information
 

needed

Spatial
 

dependence:
x(s) = f( x(si

 

), i=1,...,n )
f()?, f() –

 
spatial

 
configuration

Spatial
 

interpolations, spatial
 

simulations
-

 
decision

 
making

?



3 Background and Motivations
Problem of Traditional Geostatistics

Variogram
 

as the
 

sole
 

descriptor
 

of dependence:

-
 

two
 

point statistics, averaged
 

dependence, susceptible
 

to outliers

Interpolation and simulation:

-
 

Gaussianity
 

assumption
(symmetrical

 
and minimum

 
spatial

continuity
 

for
 

extremes)

Kriging
 

variance
 

for
 

uncertainty
 

analysis:

-
 

measurement
 

density
 

(not
 

value-dependent)

Aim of this PhD work
Develop a strategy of using the concept of copulas as a better alternative 
to the traditional geostatistics for spatial modeling.



4 Outline
 

of the
 

Research Work

 Using
 

copulas
 

to describe
 

the
 

spatial
 

dependence
 

and 
apply

 
scale-invariant

 
and higher

 
order dependence

measures

 Derive
 

theoretical
 

copulas
 

for
 

spatial
 

modeling

 Simulate random fields with non-Gaussian dependence

 Develop an appropriate model inference approach

 Develop Interpolation approach using copulas

 Using copulas to guide observation network design for 
environmental variables

Model Building

Applications
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6 Copula and Spatial Dependence
Definition of copula
-

 
Copula is a standardized multivariate distribution with all univariate 

margins being uniformly distributed on [0,1]:

]1,0[]1,0[: nC



7 Copula and Spatial Dependence
Advantage of using copula

-
 

Captures the pure dependence 
of RVs without the influence of 
marginal.

-
 

Scale invariant : no problem for 
outliers and data transformations

-
 

Full distribution: more informative 
than variogram

Same Copula!

Y1 Y2

X2X1

Different Distributions
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Empirical bivariate spatial copula
Copula and Spatial Dependence

0.3

0.89h

h

hh

h

h
h

h
h

1. For a certain h, select out the pairs.

2. Define a regular grid on the unit square.

3. Count the pair of the cumulative distribution (cdf)
 

values in the 
corresponding section of the grid.

0.3

0.89 (0.3,0.89)

0.89

0.3
(0.89,0.3)

Bivariate frequency = n/N 
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Empirical bivariate spatial copula

Copula and Spatial Dependence

Bivariate copula densities of chloride concentration in groundwater of Baden-Württemberg
for separation lengths 3km (left), 6km (middle) and 9km (right)

0.2

0.2

0.9
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Measure of dependence
1. Rank correlation/Spearman‘s rho –

 
scale invariant

   
 



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Variogram (left) and rank correlation (right) over distance of chloride

Copula and Spatial Dependence
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Measure of dependence

Copula and Spatial Dependence

            22 5.0)(5.0)(5.0)(5.0)(  hxxhxx ZFZFZFZFEA
x,

 

h

 

-

 

location and separating vector F

 

-

 

marginal distribution of the RV

 

Z

1.Measure of asymmetry –
 

scale invariant and third moment

+ - 0 0
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Limitations: 
- fully symmetric
- minimum spatical continuity for extremes

Existing copulas for spatial modeling –
 

Gaussian copula
Multivariate Gaussian copula density:

where x

 

-

 

the vector whose components are normally distributed variables
-

 

the correaltion matrix

Fig: Bivariate Gaussian copula density (left) and spatial realization of Gaussian copula (right)



Theoretical Copulas
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V-transformed normal copula

Theoretical Copulas

g(y) = m-y          if y<m

g(y) = k(y-m)α
 

if y≥m

where

 

Y ~ N(0,1)
m, k, α

 

–

 

model parameters

m=1, k=3, 
α=1

m=0.5, k=2, 
α=2

m=0, k=2, 
α=0.4

y

g(y)

Fig: corresponding bivariate copula densities

m=0, k=2, 
α=0.4

m=1, k=3, 
α=1

m=0.5, k=2, 
α=2
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Maximum normal copula

Theoretical Copulas

),max( XYZ 
where

 

Y

 

~ N(0,Γ1

 

),    Y=[Y1

 

,Y2

 

, ... , Yn

 

],    Yi

 

~ N(0,1)
X

 

~ N(m,Γ2

 

),   X=[X1

 

,X2

 

, ..., Xn

 

],     Xi

 

~ N(m,σ2)

-
 

Maximum of two independent Gaussian processes:

Fig: Examples of bivariate densities of maximum normal copula
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Maximum normal copula

Theoretical Copulas

-
 

Effects of two random processes
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18 Model Inference

MAX

       ,)(,...,)(, )(1 knzzk ZFZFcSc uu

1. The observation set is divided into several disjoint subsets

2. For each subset and a given 
parameterization of the copula, 
the likelihood is calculated.

3. Since there are no overlaps between the subsets, the overall likelihood is 
the product of the individual ones.

c – denotes the copula density
θ

 

–

 

parameters of the theoretical copula
FZ

 

–

 

marginal distribution of the random variable

 

Z
ui

 

–

 

locations of points within the subset

 

Sk

   



K

k
kn ScZZL

1
1 ,)(),...,(  uu

K

 

–

 

total number of the subsets
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21 Interpolation using Copulas

 )( ii zFu s

1. Transform the observed values z(si

 

) to cumulative distribution (cdf)
 

values 
using the empirical distribution F( )

2. Calculate the conditional distribution at the unsampled location s 
conditioned on the neighbouring observations with the help of 
conditional copula:

      )(,,)(; 111, sss s zFuzFuuCuF nnn 

Procedure of interpolation

3. Select one statistics u* (e.g., median) from 
the conditional copula as the interpolator

0.5

u*
u

Fn

 

(s;u)

4. Transform the interpolated values back into 
the original space using the empirical 
distribution

z*=F(u*)



22 Interpolation using Copulas
Application

Groundwater quality parameters
in Baden-Württemberg:

more than 2000 observations
- chloride
- pH
- nitrate
- sulfate
- dissolved oxygen



23 Interpolation using Copulas
Empirical copulas

Fig: Empirical copulas of nitrate (upper line) and pH (lower line) for the 
separation lengths of 3km, 6km and 9km.



24 Interpolation using Copulas
Interpolation Methods

-
 

V-transformed normal copula

For comparison:
-

 
Gaussian copula

- Ordinary Kriging
-

 
Indicator Kriging



25 Interpolation using Copulas
Comparison of interpolation maps -

 
sulfate

V-copula Gaussian copula

Ordinary KrigingIndicator Kriging



26 Interpolation using Copulas
Confidence intervals –

 
from V-copula

90%
 

confidence interval = F(0.95)-F(0.05)

dissovled oxygen                                               pH value



27 Interpolation using Copulas
Interpolation maps

dissovled oxygen                                               pH value
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Crossvalidation results

Chloride
[mg/l]

Nitrate
[mg/l]

pH
[-]

Dissolved 
oxygen [mg/l]

Sulfate
[mg/l]

V-copula 14.861 13.689 0.192 1.876 34.992

G-copula 15.380 13.938 0.194 2.049 38.128

O.Kriging 16.817 13.853 0.198 1.911 42.365

I.Kriging 16.561 15.501 0.200 1.989 43.979

Mean absolute error

Interpolation using Copulas
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Unconditional simulation

Simulation of non-Gaussian Fields

Apply non-monotonic transformation (e.g. V-shaped transformation) to a 
Gaussian process –

 
non-Gaussian process

g(Y)

Y

Y –

 

Gaussian variable
g( ) –

 

non-monotonic transformation
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),( 21 YYfZ 

Y1

 

, Y2

 

–

 

independent Gaussian processes
(for this case with orthogonal anisotropies to model layering and macropores 

simultaneously)

Combination of two processes: 

Simulation of non-Gaussian Fields

f
 

–
 

combination function (e.g. f = max)

Unconditional simulation
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-
 

Generation of random fields with prescribed variability honoring the 
measurements at the sampling locations

Conditional simulation
Simulation of non-Gaussian Fields
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3. Draw from this ccdf
 

an estimate, z1(s’1
 

) 
(Monte Carlo simulation),

 
and add this   

point to conditioning data for all the   
subsequent simulations.

2. Define a random path through all the unsampled points. At the
 

first point 
s’1

 

, the cumulative conditional distribution (ccdf) is calculated conditioned 
on the m

 
original observations

      )(,,)(')(';' 111,'11 mmm zFuzFuuCmuF sss
1S 

z1(s’1
 

)

s’1

Conditional simulation –
 

sequential simulation
Simulation of non-Gaussian Fields

1. Transform the observed values into cdf
 

values

5. A second realization would start with the 
original conditioning data and visiting the 
unsampled points in a different sequence.

4. Repeat until all of the unsampled points have 
a simulated value. 

unsmapled sampled
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Conditional simulation
Simulation of non-Gaussian Fields

α=0.1, m=0.5, k=4.0 α=1.0, m=0.5, k=6.0 α=0.5, m=0.0, k=2.5
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Application
Simulation of non-Gaussian Fields

Las Cruces Trench Site (northeast of Las Cruces, New Mexico)

- saturated hydraulic conductivity
- 25 m

 
wide and by 6 m

 
deep

- sampling space about 50 cm

2

4
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Application –
 

marginal distribution
Simulation of non-Gaussian Fields

Histogram of log saturated hydraulic conductivity –
 

normal distribution
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Empirical copulas along the omnidirection (upper) and horizontal
 

directions 
(lower) –

 
non-Gaussian behavior

0.5 m 1.0 m 1.5 m 2.0 m

0.5 m 1.5 m 3.0 m 4.5 m

Application –
 

empirical copulas
Simulation of non-Gaussian Fields
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Gaussian copula

V-transformed normal copula

Maximum normal copula

Empirical copulas from the dataset

Application –
 

parameterized theoretical copulas
Simulation of non-Gaussian Fields
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Statistical test over 100 realizations for rank correlation structure
Application –

 
goodness of fit test

Simulation of non-Gaussian Fields

Omnidirection

Horizontal direction

Gauss-copula V-copula Maximum-copula

Gauss-copula V-copula Maximum-copula
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Application –
 

goodness of fit test 
Simulation of non-Gaussian Fields

Statistical test over 100 realizations for asymmetry over distance structure

Omnidirection

Horizontal direction

Gauss-copula V-copula Maximum-copula

Gauss-copula V-copula Maximum-copula
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Purpose oriented network design
Observation Network Design

Where to collect additional measurements so that the objectives of 
monitoring

 
are met in the most cost-effective way?

Uncertainty estimation
 

of predictions at the unsampled locations
-

 
extremes may behave differently from the average

Kriging variance:
only reflects the measurement density

Confidence intervals based on copulas: 
considers both the data geometry and the data values
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Methodology 
Observation Network Design

Gauss-copula

Maximum-copula
















)(
)(

)(
)(

)(
1

0

s
s

s
s

s
Z
Z

if
if

State of
 

nature
 

θ
 

of
 

the
 

variable Z
 

being
 

below
 

or
 

above
 

the
 

threshold
 

β
at a sampled

 
location

 
s determines the

 
decision

positive decision d0

 

(allow to use water)

negative decision d1

 

(forbid to use water)

Utility
 

matrix
 

weighs
 

the
 

gain
 

or
 

loss
 

of
 

a certain
 

decision

Us

 

(θi

 

,di

 

) θ0 θ1

d0 k00 k01

d1 k10 k11 gains
loss
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Methodology 
Observation Network Design

Gauss-copula

V-copula

Expected utility
 

at an unsampled
 

location s‘
 

for a decision di

 

:

     1100 )'()'(   sss pkpkdUE iii i = 0,1

If
 

probability of θ=θ0

 

(Z<β) at the unsampled
 

location s‘
 

exceeds a certain 
limit pl then d0

 

is taken, else d1

 

is taken

11100100

0111

kkkk
kkpl 




     )(,),()(,')'( 11*, nZnZZnn ZFuzFuFCFZP   sss

The probability p(θ(s‘)=θ0

 

)=p(Z(s‘)<β) is calculated as the conditional copula:

s‘

 

: unsampled location

ui

 

: quantile values at the existing observation points
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Methodology

Gauss-copula

V-copula

If
 

a new
 

measurement
 

location
 

is
 

added, the
 

conditional
 

copula at the
unsampled

 
location

 
can be re-estimated:

observations
candidates

  

1

0

*
1' dCuUE ns

   )(),(,),()()'( 11111,'   nZnnZnZZn ZFuZFuzFuFCZP  ss

The value un+1

 

at the new candidate s*
 

should also be estimated from the 
old observations using conditional copula C*

 
–

 
full distribution

The expected utility at an unsampled location s‘:

 




m

i
n dCuUE

i
1

1

0

*
1's

The candidate which produces the highest 
total utility of the entire estimation grid will 
be selected

Observation Network Design

MAX
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V copula

Synthetic example 
Observation Network Design

0.0,0.1,0.2,0.0 11100100  kkkk
-

 
entry values of the utility matrix:

- threshold probability   8.0)(  sZP

Gaussian copula

-
 

V-copula and Gaussian copula

Fig: Contour maps of percentage of positive decisions resulting from Gaussian 
copula (left) and V-copula (right).
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Synthetic example 
Observation Network Design

0.0,0.1,0.2,0.0 11100100  kkkk
-

 
entry values of the utility matrix:

- threshold probability   8.0)(  sZP

How about using Indicator Kriging?
- All the observations are below the
threshold, IK gives no information on where to measure

-
 

V-copula and Gaussian copula
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Summary 
Summary and Outlook

V-copula

• Empirical copulas and scale-invariant measures are applied to investigate     
spatial dependence.

• Theoretical non-Gaussian copulas are derived for spatial modeling.

• A model inference approach is developed to parameterize theoretical copulas.

• Methodology of interpolation using copulas is developed and the
crossvalidation results of an application to the groundwater quality parameters 
show that the copula approach gets better performance than Kriging.

• Simulation algorithms of generating realizations with non-Gaussian 
dependence are developed for both unconditional and conditional cases 
and statistical tests of simulations of a hydraulic conductivity dataset 
demonstrate that the non-Gaussian copula is more suitable than the 
Gaussian copula.

• Conditional copula is embedded into the utility function to guide the 
observation network design and the synthetic exmaple shows its

 
potential.  
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Outlook 
Summary and Outlook

V-copula

- Copula models which considers effects of more processes can be 
developed to model more complex structures.

Fig: Horizontal planes from the X-ray tomography of the bulk density of a soil column (A. 
Bayer, H.-J. Vogel and K. Roth, 2004)

- The application of the concept of copula can be further extended to 
categorical spatial variables.

Fig: Surface

 

ground-penetrating

 

radar

 

(GPR) profiling

 

of sediment

 

in the

 

upper
Rhine

 

valley. (J. Tronicke, P. Dietrich, U. Wahlig

 

and E. Appel, 2001)
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