

Application of Copulas as a New Geostatistical Tool

Presented by

Jing Li

Supervisors

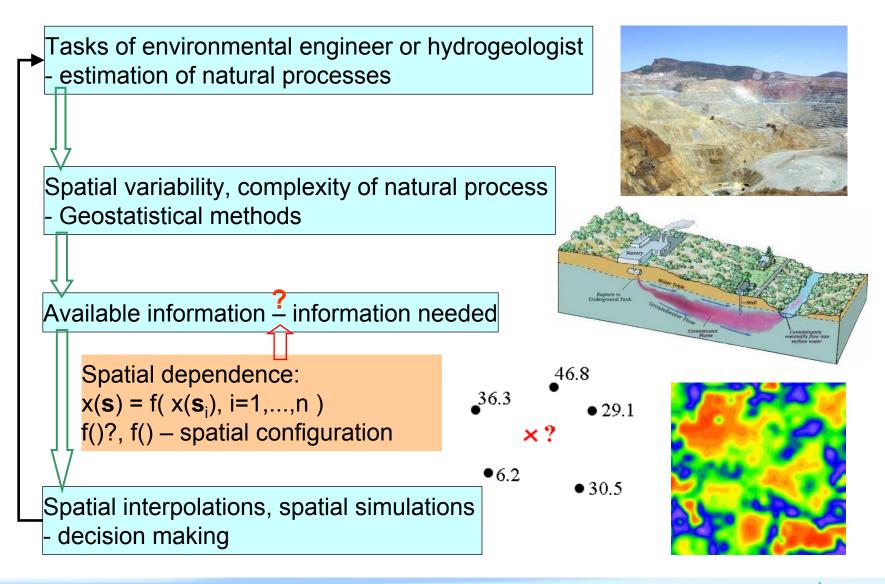
András Bardossy, Sjoerd Van der zee, Insa Neuweiler

Universität Stuttgart

Institut für Wasserbau Lehrstuhl für Hydrologie und Geohydrologie Prof. Dr. rer. nat. Dr.-Ing. András Bárdossy

Pfaffenwaldring 61, 70569 Stuttgart, Deutschland www.iws.uni-stuttgart.de

Background and Motivations



Background and Motivations

Problem of Traditional Geostatistics

Variogram as the sole descriptor of dependence:

- two point statistics, averaged dependence, susceptible to outliers

Interpolation and simulation:

 Gaussianity assumption (symmetrical and minimum spatial continuity for extremes)

Kriging variance for uncertainty analysis:

- measurement density (not value-dependent)

Aim of this PhD work

Develop a strategy of using the concept of copulas as a better alternative to the traditional geostatistics for spatial modeling.

Outline of the Research Work

- Using copulas to describe the spatial dependence and apply scale-invariant and higher order dependence measures
- Derive theoretical copulas for spatial modeling
- Develop an appropriate model inference approach

- Develop Interpolation approach using copulas
- Simulate random fields with non-Gaussian dependence
- Using copulas to guide observation network design for environmental variables

Applications

Outline of the Research Work

- Using copulas to describe the spatial dependence and apply scale-invariant and higher order dependence measures
- Derive theoretical copulas for spatial modeling
- Develop an appropriate model inference approach

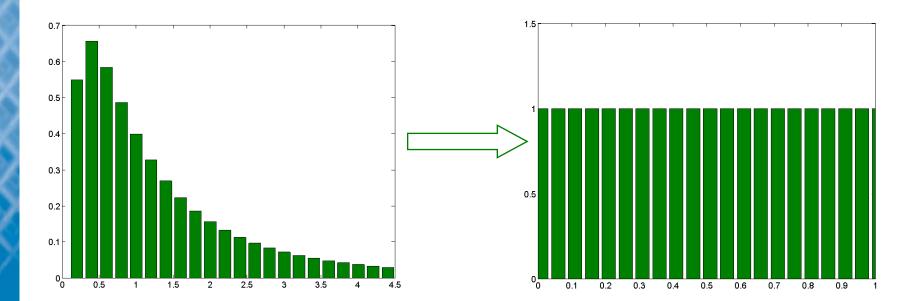
- Develop Interpolation approach using copulas
- Simulate random fields with non-Gaussian dependence
- Using copulas to guide observation network design for environmental variables

Applications

Definition of copula

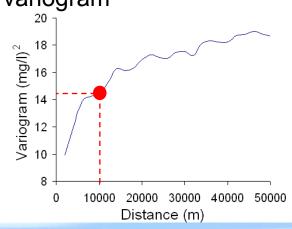
- Copula is a standardized multivariate distribution with all univariate margins being uniformly distributed on [0,1]:

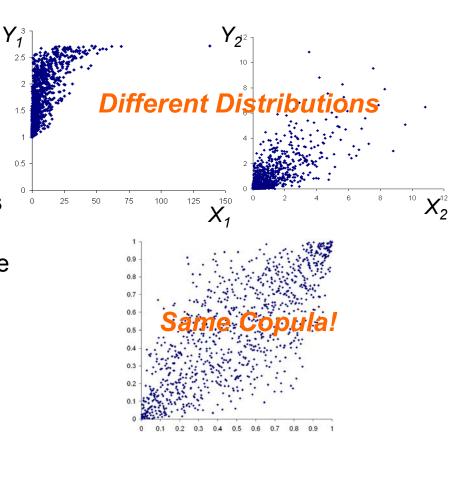
 $C: [0,1]^n \to [0,1]$



Advantage of using copula

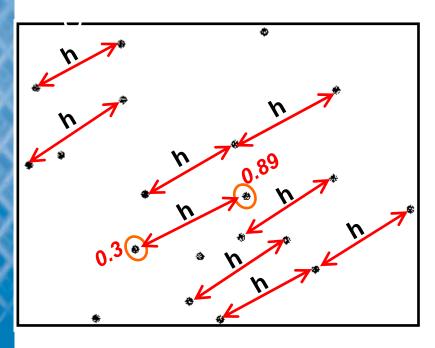
- Captures the pure dependence of RVs without the influence of marginal.
- Scale invariant : no problem for outliers and data transformations
- Full distribution: more informative than variogram

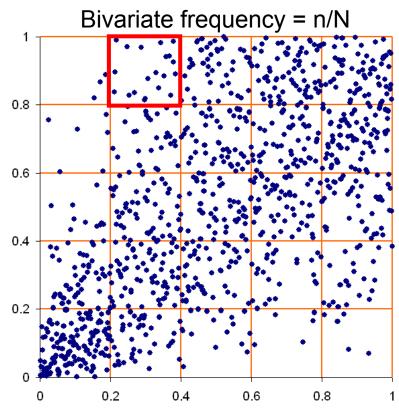




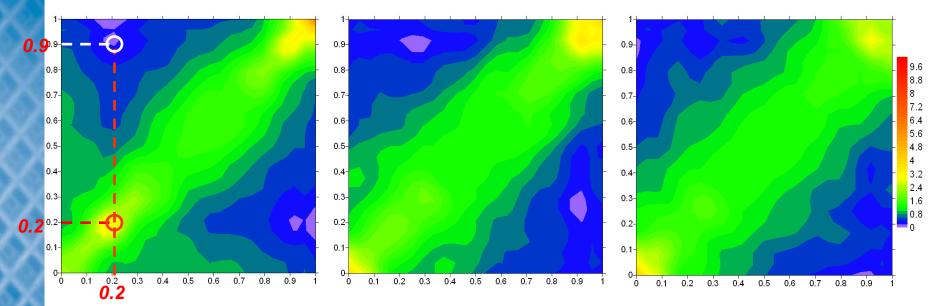
Empirical bivariate spatial copula

- 1. For a certain *h*, select out the pairs.
- 2. Define a regular grid on the unit square.
- 3. Count the pair of the cumulative distribution (*cdf*) values in the corresponding section of the grid.





Empirical bivariate spatial copula

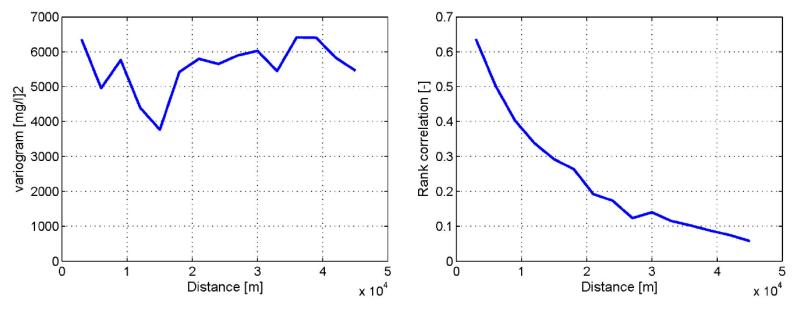


Bivariate copula densities of chloride concentration in groundwater of Baden-Württemberg for separation lengths 3km (left), 6km (middle) and 9km (right)

Measure of dependence

1. Rank correlation/Spearman's rho - scale invariant

$$\rho_{s} = \frac{E[(U - E(U))(V - E(V))]}{\sqrt{Var(U)}\sqrt{Var(V)}} = 12 \iint_{\mathbf{I}^{2}} uv \, dC(u, v) - 3$$

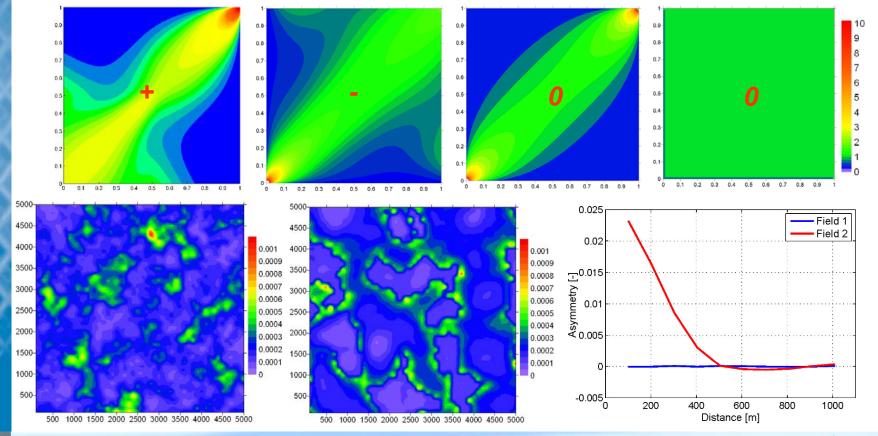


Variogram (left) and rank correlation (right) over distance of chloride

Measure of dependence

1.Measure of asymmetry – scale invariant and third moment $A = E \left[\left(F(Z(\mathbf{x})) - 0.5 \right)^2 \cdot \left(F(Z(\mathbf{x} + \mathbf{h})) - 0.5 \right) + \left(F(Z(\mathbf{x})) - 0.5 \right) \cdot \left(F(Z(\mathbf{x} + \mathbf{h})) - 0.5 \right)^2 \right]$

 \boldsymbol{x} , \boldsymbol{h} - location and separating vector F - marginal distribution of the RV Z



Outline of the Research Work

- Using copulas to describe the spatial dependence and apply scale-invariant and higher order dependence measures
- Derive theoretical copulas for spatial modeling
- Develop an appropriate model inference approach

- Develop Interpolation approach using copulas
- Simulate random fields with non-Gaussian dependence
- Using copulas to guide observation network design of environmental variables

Model Building

Applications

Theoretical Copulas

Existing copulas for spatial modeling – Gaussian copula

Multivariate Gaussian copula density:

$$c_n(u_1,\ldots,u_n) = \frac{1}{\sqrt{\Gamma}} \left(-\frac{1}{2} \mathbf{x}^T (\Gamma^{-1} - \mathbf{I}) \mathbf{x} \right)$$

where \pmb{x} - the vector whose components are normally distributed variables Γ - the correaltion matrix

Limitations:

- fully symmetric
- minimum spatical continuity for extremes

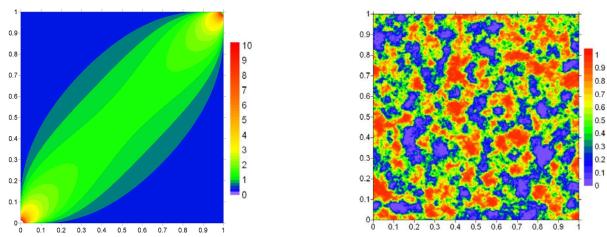
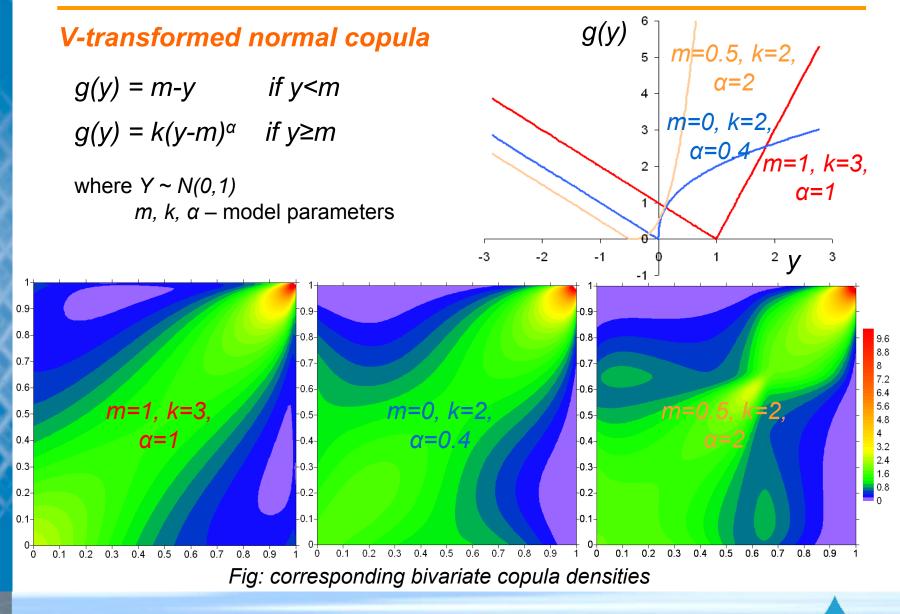


Fig: Bivariate Gaussian copula density (left) and spatial realization of Gaussian copula (right)

Theoretical Copulas



Theoretical Copulas

Maximum normal copula

- Maximum of two independent Gaussian processes:

 $\mathbf{Z} = \max(\mathbf{Y}, \mathbf{X})$ where $\mathbf{Y} \sim N(\mathbf{0}, \mathbf{\Gamma}_{1})$, $\mathbf{Y} = [Y_{1}, Y_{2}, ..., Y_{n}]$, $Y_{i} \sim N(0, 1)$ $\mathbf{X} \sim N(\mathbf{m}, \mathbf{\Gamma}_{2})$, $\mathbf{X} = [X_{1}, X_{2}, ..., X_{n}]$, $X_{i} \sim N(\mathbf{m}, \sigma^{2})$

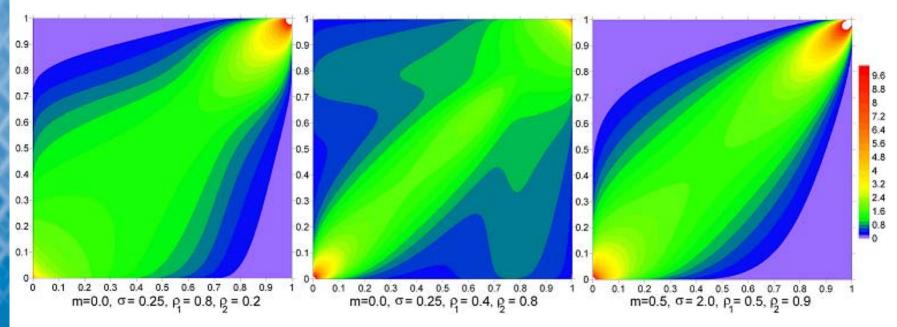
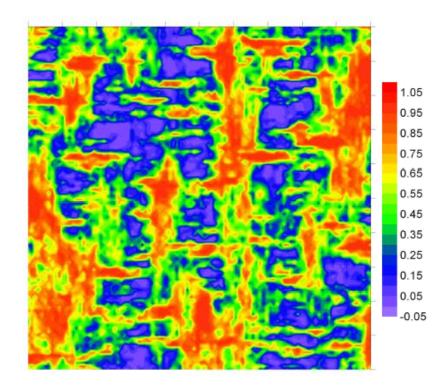


Fig: Examples of bivariate densities of maximum normal copula

Maximum normal copula

- Effects of two random processes



Outline of the Research Work

- Using copulas to describe the spatial dependence and apply scale-invariant and higher order dependence measures
- Derive theoretical copulas which are suitable for spatial modeling
- Develop an appropriate model inference approach

- Develop Interpolation approach using copulas
- Simulate random fields with non-Gaussian dependence
- Using copulas to guide observation network design of environmental variables

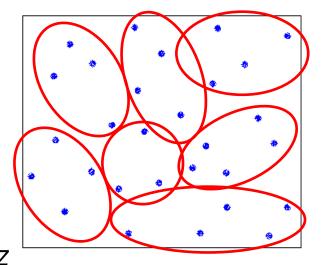
Applications

Model Inference

- 1. The observation set is divided into several disjoint subsets
- 2. For each subset and a given parameterization of the copula, the likelihood is calculated.

$$c(S_k,\theta) = c(F_z(Z(\mathbf{u}_1)), \dots, F_z(Z(\mathbf{u}_{n(k)})), \theta)$$

c – denotes the copula density θ – parameters of the theoretical copula F_Z – marginal distribution of the random variable Z u_i – locations of points within the subset S_k



3. Since there are no overlaps between the subsets, the overall likelihood is the product of the individual ones.

MAX
$$L(\theta|Z(\mathbf{u}_1),...,Z(\mathbf{u}_n)) = \prod_{k=1}^{K} c(S_k,\theta)$$

K – total number of the subsets

Outline of the Research Work

- Using copulas to describe the spatial dependence and apply scale-invariant and higher order dependence measures
- Derive theoretical copulas which are suitable for spatial modeling
- Develop an appropriate model inference approach

- Develop Interpolation approach using copulas
- Simulate random fields with non-Gaussian dependence
- Using copulas to guide observation network design of environmental variables

Applications

Outline of the Research Work

- Using copulas to describe the spatial dependence and apply scale-invariant and higher order dependence measures
- Derive theoretical copulas which are suitable for spatial modeling
- Develop an appropriate model inference approach

- Develop Interpolation approach using copulas
- Simulate random fields with non-Gaussian dependence
- Using copulas to guide observation network design of environmental variables

- Applications

Procedure of interpolation

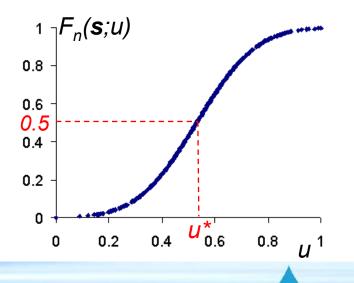
1. Transform the observed values $z(s_i)$ to cumulative distribution (*cdf*) values using the empirical distribution F()

$$u_i = F(z(\mathbf{s}_i))$$

2. Calculate the conditional distribution at the unsampled location **s** conditioned on the neighbouring observations with the help of conditional copula:

$$F_n(\mathbf{s}; u) = C_{\mathbf{s}, n}\left(u \middle| u_1 = F(z(\mathbf{s}_1)), \cdots, u_n = F(z(\mathbf{s}_1))\right)$$

- 3. Select one statistics u^* (e.g., median) from the conditional copula as the interpolator
- 4. Transform the interpolated values back into the original space using the empirical distribution

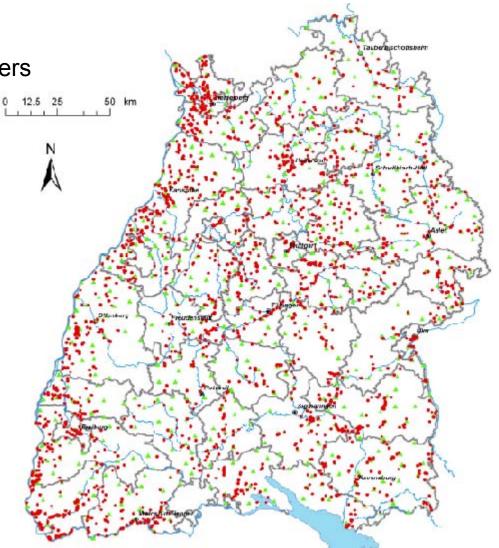


Application

Groundwater quality parameters in Baden-Württemberg:

more than 2000 observations

- chloride
- *pH*
- nitrate
- sulfate
- dissolved oxygen



Empirical copulas

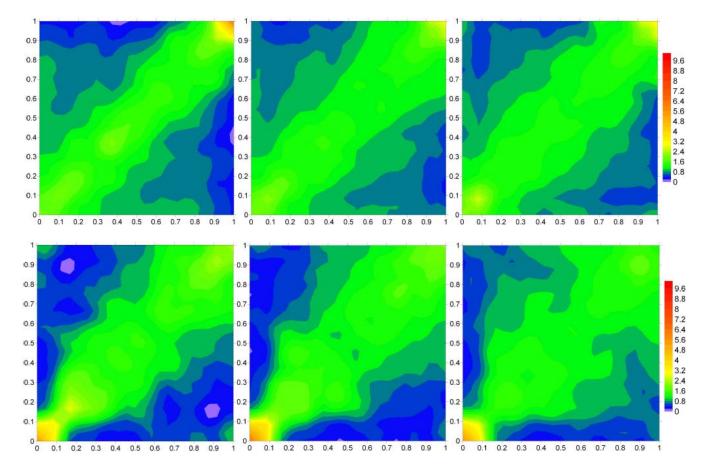


Fig: Empirical copulas of nitrate (upper line) and pH (lower line) for the separation lengths of 3km, 6km and 9km.

Interpolation Methods

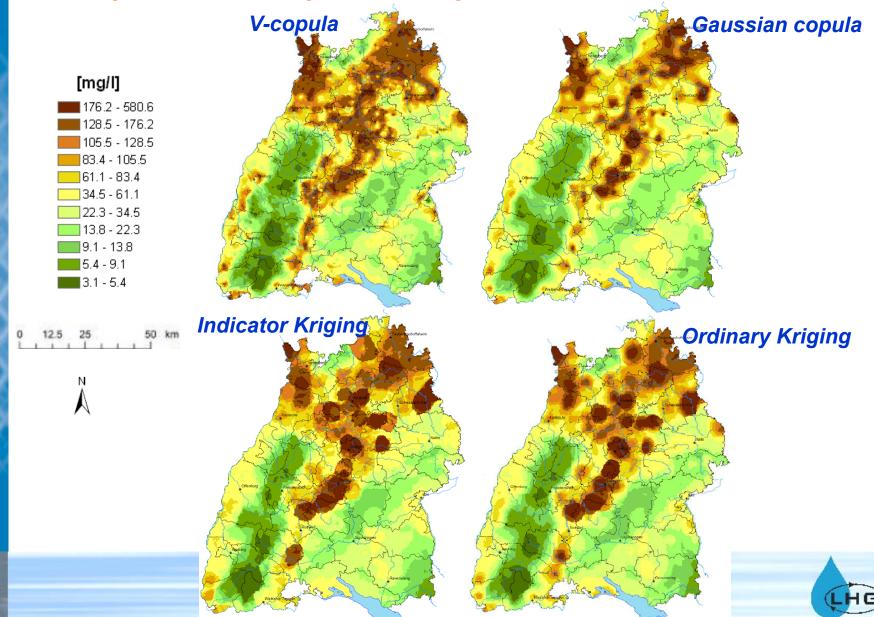
- V-transformed normal copula

For comparison:

- Gaussian copula
- Ordinary Kriging
- Indicator Kriging

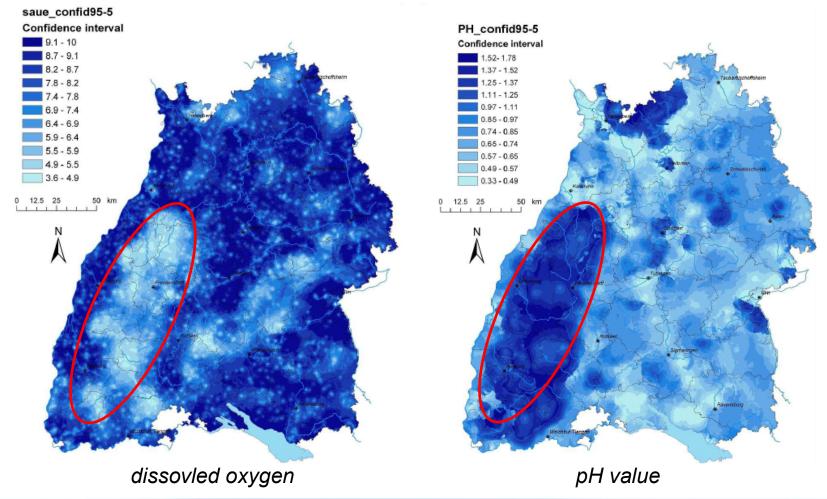
24

Comparison of interpolation maps - sulfate

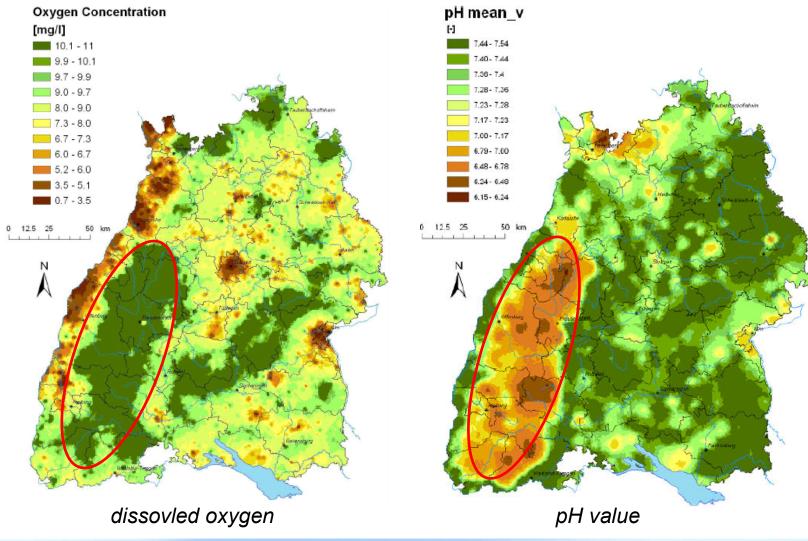


Confidence intervals – from V-copula

90% confidence interval = F(0.95)-F(0.05)



Interpolation maps



Crossvalidation results

	Chloride [mg/l]	Nitrate [mg/l]	рН [-]	Dissolved oxygen [mg/l]	Sulfate [mg/l]
V-copula	14.861	13.689	0.192	1.876	34.992
G-copula	15.380	13.938	0.194	2.049	38.128
O.Kriging	16.817	13.853	0.198	1.911	42.365
I.Kriging	16.561	15.501	0.200	1.989	43.979

Mean absolute error

Outline of the Research Work

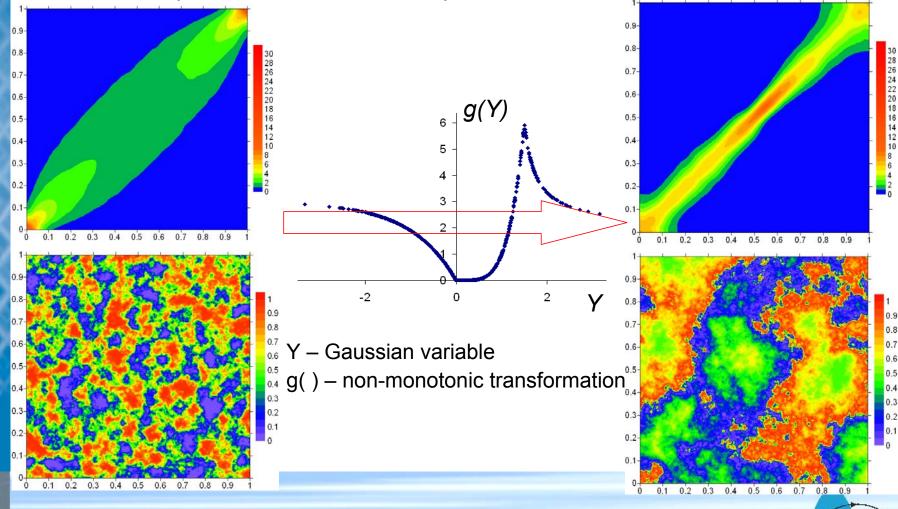
- Using copulas to describe the spatial dependence and apply scale-invariant and higher order dependence measures
- Derive theoretical copulas which are suitable for spatial modeling
- Develop an appropriate model inference approach

- Develop Interpolation approach using copulas
- Simulate random fields with non-Gaussian dependence
- Using copulas to guide observation network design of environmental variables

Applications

Unconditional simulation

Apply non-monotonic transformation (e.g. V-shaped transformation) to a Gaussian process – non-Gaussian process



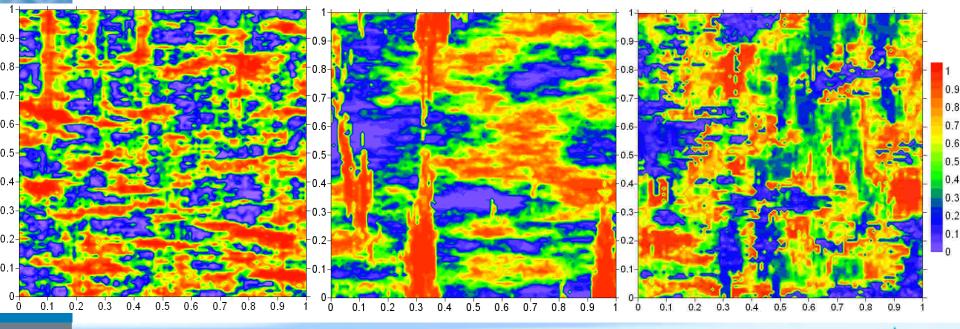
Unconditional simulation

Combination of two processes:

$$Z = f(Y_1, Y_2)$$

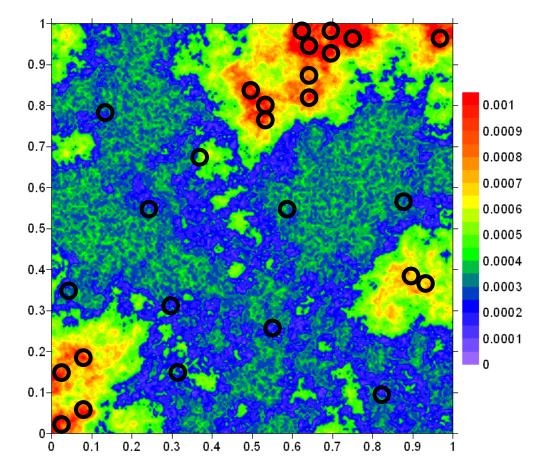
- f combination function (e.g. f = max)
- Y_1 , Y_2 independent Gaussian processes

(for this case with orthogonal anisotropies to model layering and macropores simultaneously)



Conditional simulation

- Generation of random fields with prescribed variability honoring the measurements at the sampling locations

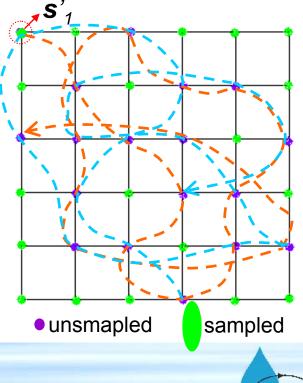


Conditional simulation – sequential simulation

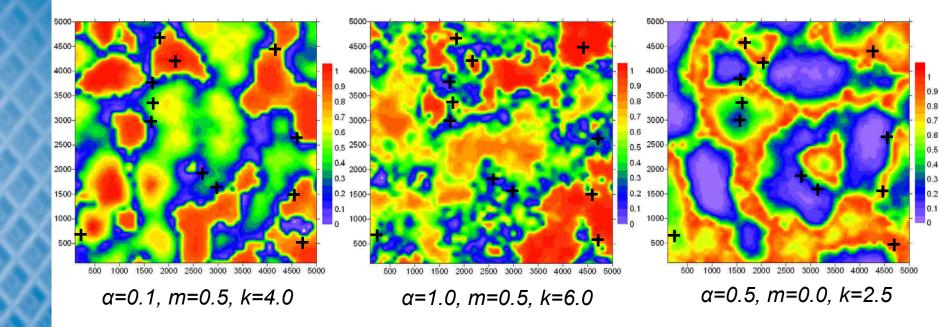
- 1. Transform the observed values into cdf values
- Define a random path through all the unsampled points. At the first point s'₁, the cumulative conditional distribution (*ccdf*) is calculated conditioned on the *m* original observations

$$F(\mathbf{s}_{1}'; u_{1}'|(m)) = C_{\mathbf{s}_{1}', m}(u_{1}'|u_{1} = F(z(\mathbf{s}_{1})), \cdots, u_{m} = F(z(\mathbf{s}_{m})))$$

- 3. Draw from this *ccdf* an estimate, $z^{1}(s'_{1})$ (Monte Carlo simulation), and add this point to conditioning data for all the subsequent simulations.
- 4. Repeat until all of the unsampled points have a simulated value.
- 5. A second realization would start with the original conditioning data and visiting the unsampled points in a different sequence.



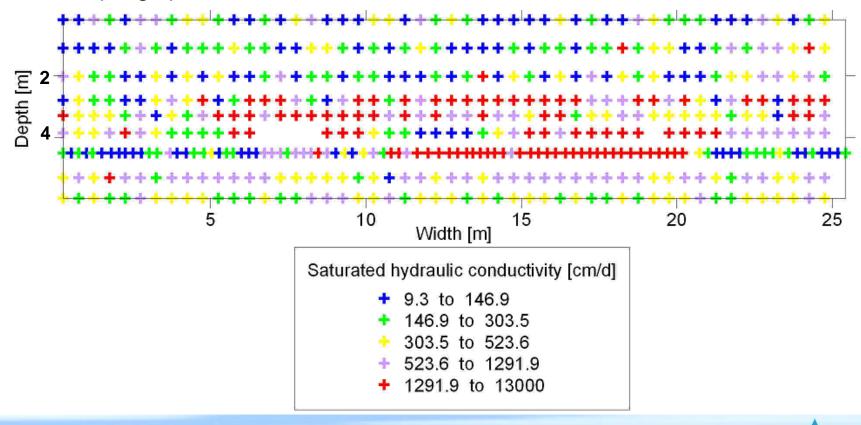
Conditional simulation



Application

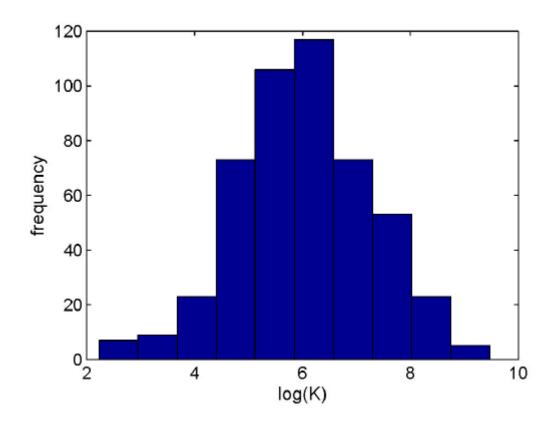
Las Cruces Trench Site (northeast of Las Cruces, New Mexico)

- saturated hydraulic conductivity
- 25 *m* wide and by 6 *m* deep
- sampling space about 50 cm



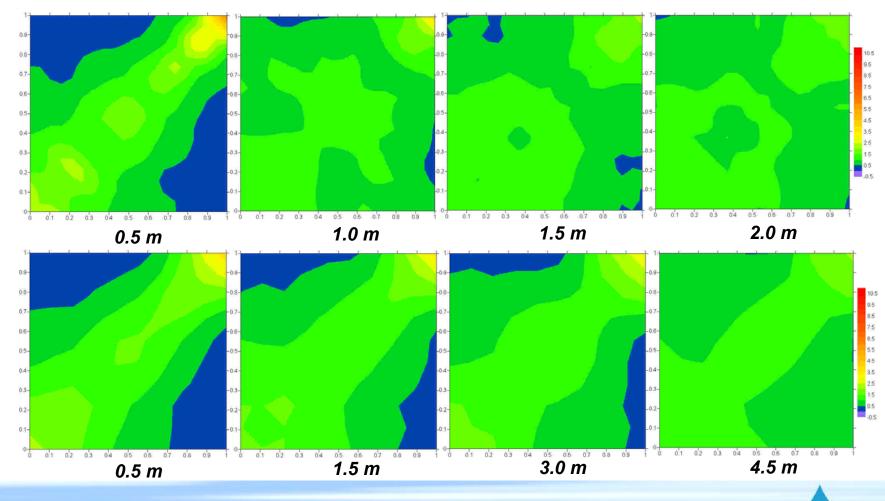
Application – marginal distribution

Histogram of log saturated hydraulic conductivity – normal distribution

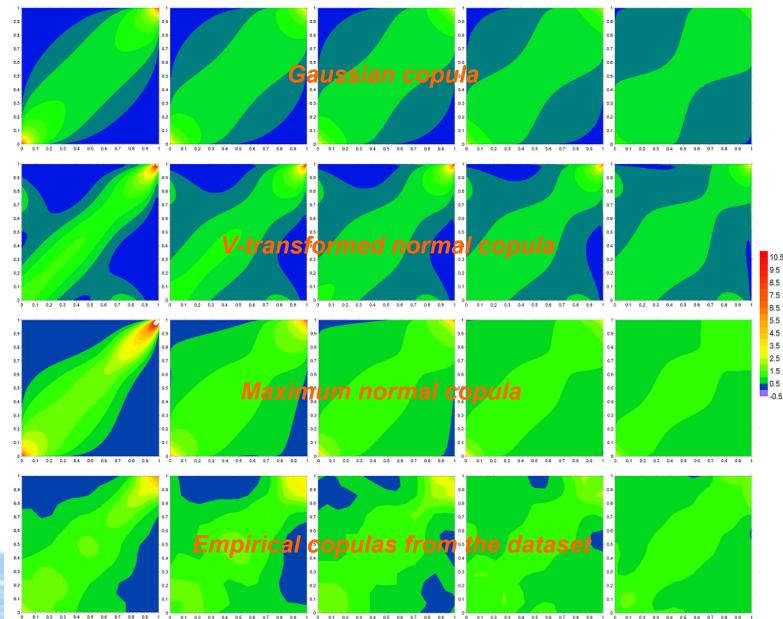


Application – empirical copulas

Empirical copulas along the omnidirection (upper) and horizontal directions (lower) – non-Gaussian behavior

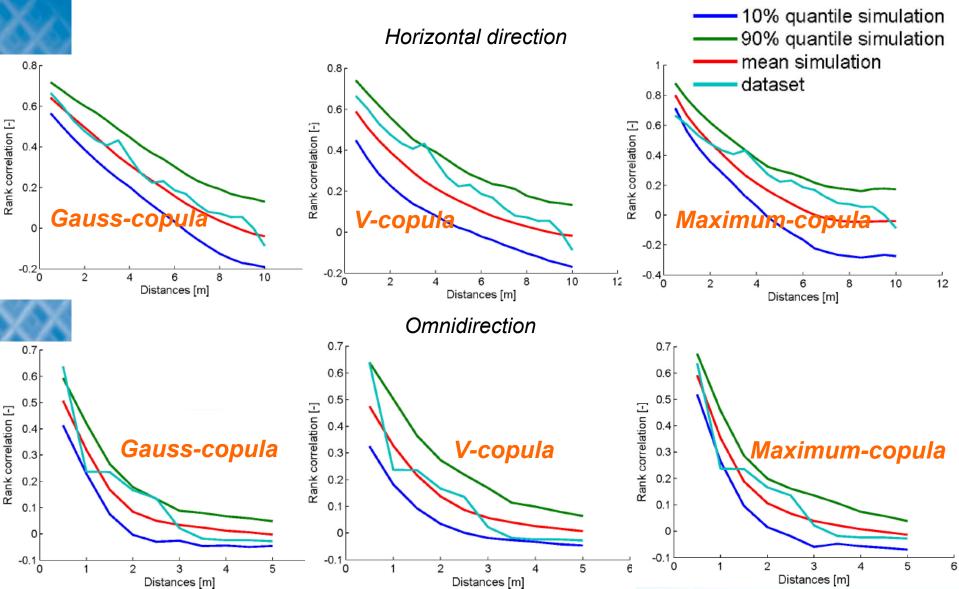


Application – parameterized theoretical copulas



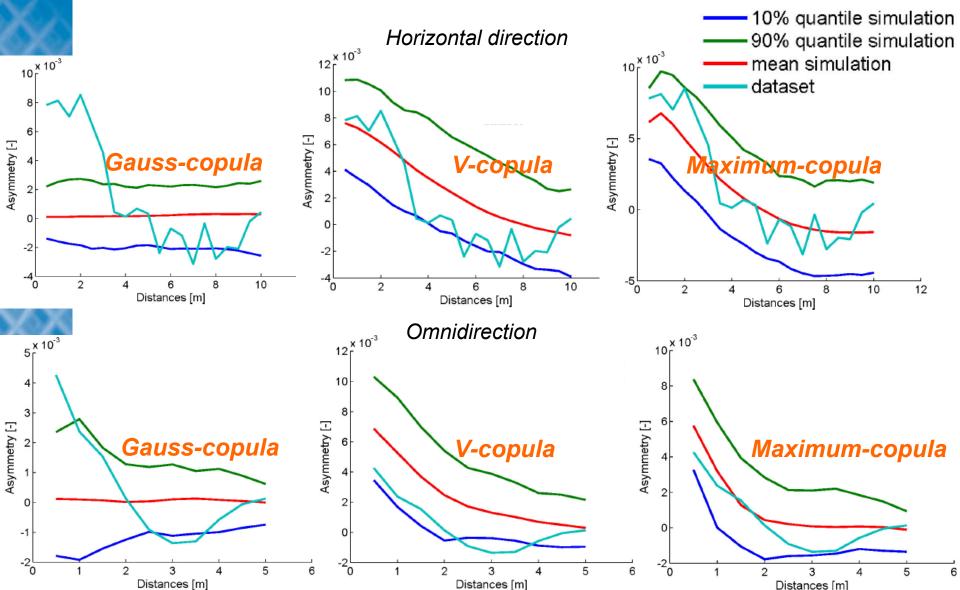
Application – goodness of fit test

Statistical test over 100 realizations for rank correlation structure



Application – goodness of fit test

Statistical test over 100 realizations for asymmetry over distance structure



Outline of the Research Work

- Using copulas to describe the spatial dependence and apply scale-invariant and higher order dependence measures
- Derive theoretical copulas which are suitable for spatial modeling
- Develop an appropriate model inference approach

- Develop Interpolation approach using copulas
- Simulate random fields with non-Gaussian dependence
- Using copulas to guide observation network design for environmental variables

Model Building

- Applications

Purpose oriented network design

Where to collect additional measurements so that the *objectives of monitoring* are met in the most cost-effective way?

Uncertainty estimation of predictions at the unsampled locations - extremes may behave differently from the average

Kriging variance: only reflects the measurement density

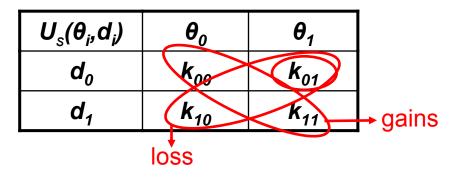
Confidence intervals based on copulas: considers both the data geometry and the data values

Methodology

State of nature θ of the variable *Z* being below or above the threshold β at a *sampled* location *s* determines the decision

 $\theta(\mathbf{s}) = \begin{cases} \theta_0(\mathbf{s}) & \text{if } Z(\mathbf{s}) < \beta & \text{positive decision } d_0 \text{ (allow to use water)} \\ \theta_1(\mathbf{s}) & \text{if } Z(\mathbf{s}) \ge \beta & \text{negative decision } d_1 \text{ (forbid to use water)} \end{cases}$

Utility matrix weighs the gain or loss of a certain decision



Methodology

Expected utility at an **unsampled** location **s**[•] for a decision *d_i*:

$$E(U_{\mathbf{s}}|d_i) = k_{i0} \cdot p(\theta(\mathbf{s}') = \theta_0) + k_{i1} \cdot p(\theta(\mathbf{s}') = \theta_1) \quad i = 0,1$$

If probability of $\theta = \theta_0$ (Z< β) at the *unsampled* location **s**[•] exceeds a certain limit p_l then d_0 is taken, else d_1 is taken

$$p_l = \frac{k_{11} - k_{01}}{k_{00} - k_{01} - k_{10} + k_{11}}$$

The probability $p(\theta(s')=\theta_0)=p(Z(s')<\beta)$ is calculated as the conditional copula:

$$P(Z(\mathbf{s}') < \beta) = F_n(\mathbf{s}', \beta) = C_{\mathbf{s}^{*}, n}(F_Z(\beta)|u_1 = F_Z(z_1), \dots, u_n = F_Z(Z_n))$$

s': unsampled location

 u_i : quantile values at the existing observation points

Methodology

If a new measurement location is added, the conditional copula at the unsampled location can be re-estimated:

$$P(Z(\mathbf{s}') < \beta) = C_{\mathbf{s}', n+1}(F_Z(\beta) | u_1 = F_Z(z_1), \cdots, u_n = F_Z(Z_n), u_{n+1} = F_Z(Z_{n+1}))$$

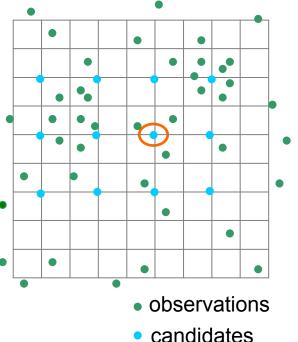
The value u_{n+1} at the new candidate **s**^{*} should also be estimated from the old observations using conditional copula C^* – full distribution

The expected utility at an unsampled location s':

$$\int_{0}^{1} E\left[U_{\mathbf{s}'} \middle| u_{n+1}\right] dC^*$$

The candidate which produces the highest total utility of the entire estimation grid will be selected

$$\max \sum_{i=1}^{m} \int_{0}^{1} E \left[U_{\mathbf{s}'_{i}} \middle| u_{n+1} \right] dC^{*}$$



1000

900

800

700

600

0.7

3

0.1

4

Synthetic example

- threshold probability $P(Z(\mathbf{s}) < \beta) = 0.8$
- entry values of the utility matrix:

$$k_{00} = 0.0, \quad k_{01} = -2.0, \quad k_{10} = -1.0, \quad k_{11} = 0.0$$

- V-copula and Gaussian copula

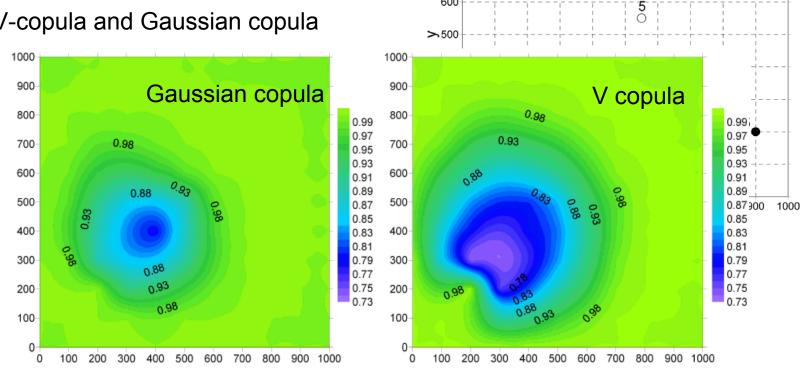


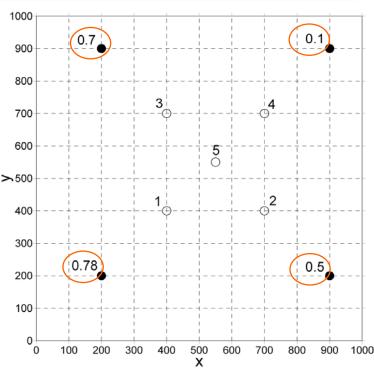
Fig: Contour maps of percentage of positive decisions resulting from Gaussian copula (left) and V-copula (right).

Synthetic example

- threshold probability $P(Z(\mathbf{s}) < \beta) = 0.8$
- entry values of the utility matrix:

$$k_{00} = 0.0, \quad k_{01} = -2.0, \quad k_{10} = -1.0, \quad k_{11} = 0.0$$

- V-copula and Gaussian copula



How about using Indicator Kriging?

- All the observations are below the threshold, IK gives no information on where to measure

Summary and Outlook

Summary

- Empirical copulas and scale-invariant measures are applied to investigate spatial dependence.
- Theoretical non-Gaussian copulas are derived for spatial modeling.
- A model inference approach is developed to parameterize theoretical copulas.
- Methodology of interpolation using copulas is developed and the crossvalidation results of an application to the groundwater quality parameters show that the copula approach gets better performance than Kriging.
- Simulation algorithms of generating realizations with non-Gaussian dependence are developed for both unconditional and conditional cases and statistical tests of simulations of a hydraulic conductivity dataset demonstrate that the non-Gaussian copula is more suitable than the Gaussian copula.
- Conditional copula is embedded into the utility function to guide the observation network design and the synthetic exmaple shows its potential.

Outlook

- Copula models which considers effects of more processes can be developed to model more complex structures.

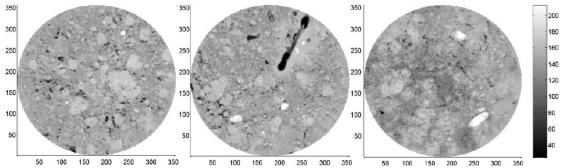


Fig: Horizontal planes from the X-ray tomography of the bulk density of a soil column (A. Bayer, H.-J. Vogel and K. Roth, 2004)

- The application of the concept of copula can be further extended to categorical spatial variables.

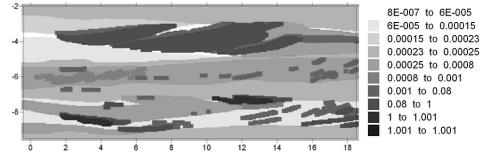


Fig: Surface ground-penetrating radar (GPR) profiling of sediment in the upper Rhine valley. (J. Tronicke, P. Dietrich, U. Wahlig and E. Appel, 2001)

Thank you

